CIE-9-MC Code Classification with knn and SVM
نویسندگان
چکیده
This paper is concerned with automatic classification of texts in a medical domain. The process consists in classifying reports of medical discharges into classes defined by the CIE-9-MC codes. We will assign CIE-9-MC codes to reports using either a knn model or support vector machines. One of the added values of this work is the construction of the collection using the discharge reports of a medical service. This is a difficult collection because of the high number of classes and the uneven balance between classes. In this work we study different representations of the collection, different classication models, and different weighting schemes to assign CIE-9-MC codes. Our use of document expansion is particularly novel: the training documents are expanded with the descriptions of the assigned codes taken from CIE-9-MC. We also apply SVMs to produce a ranking of classes for each test document. This innovative use of SVM offers good results in such a complicated domain.
منابع مشابه
Hybridized KNN and SVM for gene expression data classification
Support vector machine (SVM) is one of the most powerful supervised learning algorithms in gene expression analysis. The samples intermixed in another class or in the overlapped boundary region may cause the decision boundary too complex and may be harmful to improve the precise of SVM. In the present paper, hybridized k-nearest neighbor (KNN) classifiers and SVM (HKNNSVM) is proposed to deal w...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملTracking Model of Moving Target Based on KNN - SVM
According to the defects of KNN(K-Nearest Neighbor) algorithm and SVM(Support Vector Machine) algorithm in tracking a moving target such the large consumption and the low accuracy of target tracking error, a tracking model of moving target is proposed based on the combination of KNN algorithm and SVM algorithm with minimum distance optimization. First categories divided according to the princip...
متن کاملkNN Versus SVM in the Collaborative Filtering Framework
We present experimental results of confronting the k-Nearest Neighbor (kNN) algorithm with Support Vector Machine (SVM) in the collaborative filtering framework using datasets with different properties. While k-Nearest Neighbor is usually used for the collaborative filtering tasks, Support Vector Machine is considered a state-of-the-art classification algorithm. Since collaborative filtering ca...
متن کاملFudaSys Video Retrieval in TRECVID 2012
The video retrieval system we developed for TRECVID 2012 mainly involves the semantic indexing task which includes key frame extraction, low level feature extraction, classification and concept fusion. We extracted a new low level feature, explored various classification and fusion schemes. Four “light” runs and two 2 “pair” runs we submitted are as follows: L_A_FudaSys1: Fusion based on concep...
متن کامل